Linux – Writing a Simple Container App with Namespaces

One of the building blocks to implement containers is Linux namespaces. Namespaces control what a process can see. It can be the processes IDs, mount points, network adapters and more.

To use namespaces we call the clone(2) system call.

Creating a child process – fork vs clone

To create a new process in Linux, we can use fork(2) or clone(2) system calls. We use fork(2) to create a new child process with a separate memory mapping (using CoW) , we use clone(2) to create a child process that shares resources with its parent. One use of clone is to implement multithreading, other use is to implement namespaces

Namespaces with clone(2)

To create a child process in a new namespace and isolated resources we need to use one or more of the following flags :

  • CLONE_NEWNET  – isolate network devices
  • CLONE_NEWUTS – host and domain names (UNIX Timesharing System)
  • CLONE_NEWIPC – IPC objects
  • CLONE_NEWPID – PIDs
  • CLONE_NEWNS – mount points (file systems)
  • CLONE_NEWUSER – users and groups

Simple Example – NEWPID

To create a child process with PID=1 (new processes tree) call clone(2) with CLONE_NEWPID:

clone(child_fn, child_stack+5000, CLONE_NEWPID , NULL);

getpid() on the child process returns 1, getppid() returns 0. If the child process creates another child it will get a process id from the new tree

Full example:

#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>

static char child_stack[5000];


void grchild(int num)
{
  printf("child(%d) in ns my PID: %d Parent ID=%d\n", num, getpid(),getppid());
  sleep(5);
  puts("end child");
}

int child_fn(int ppid) {
  int i;
  printf("PID: %ld Parent:%ld\n", (long)getpid(), getppid());
  for(i=0;i<3;i++)
  {
   	if(fork() == 0)
  	{
  		grchild(i+1);  
  		exit(0);
  	}
  	kill(ppid,SIGKILL); // no effect 
  }
  sleep(2);
  kill(2,SIGKILL); // kill the first child
  sleep(10);
  return 0;
}

int main() {
  pid_t pid = clone(child_fn, child_stack+5000, CLONE_NEWPID , getpid());
  printf("clone() = %d\n", pid);

  waitpid(pid, NULL, 0);
  return 0;
}

The main creates a child process in a new PID namespace and send its PID to the child. The child creates 3 children.

If the child process try to kill the parent (out of its namespace) – nothing happens but it can kill a process in its namespace (in this case the first child)

If you build and run this sample (run with sudo)

# sudo ./simple
clone() = 5439
PID: 1 Parent:0
child(3) in ns my PID: 4 Parent ID=1
child(2) in ns my PID: 3 Parent ID=1
child(1) in ns my PID: 2 Parent ID=1
end child
end child

As you can see the PIDs are 1-4 and the first child didn’t finish (SIGKILL)

 

Isolates Network Interfaces

To create a child process with different network interfaces use CLONE_NEWNET:

pid_t pid = clone(child_fn, child_stack+1024*1024, CLONE_NEWNET , NULL);

To create a virtual network adapter we can run ip command:

# sudo ip link add name veth0 type veth peer name veth1 netns [child pid]
# sudo ifconfig veth0 10.0.0.3

Now the child should run the command:

# ifconfig veth1 10.0.0.4

We can code all these commands but for simplicity lets use the system(3) library function

Full Example:

#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>


static char child_stack[1024*1024];

static int child_fn() {
  sleep(1);
  system("ifconfig veth1 10.0.0.4"); 
  puts("========= child network interfaces ========");
  system("ifconfig -a");
  puts("===========================================");
  sleep(1);
  system("ping -c 3 10.0.0.3");
  return 0;
}

int main() {
  char buf[255]; 

  pid_t pid = clone(child_fn, child_stack+1024*1024, CLONE_NEWNET , NULL);

  sprintf(buf,"ip link add name veth0 type veth peer name veth1 netns %d",pid); 
  system(buf);
  system("ifconfig veth0 10.0.0.3"); 
  
  
  waitpid(pid, NULL, 0);
  return 0;
}

Run this test – the output:

========= child network interfaces ========
lo        Link encap:Local Loopback  
          LOOPBACK  MTU:65536  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

veth1     Link encap:Ethernet  HWaddr 7a:d6:68:fb:c0:04  
          inet addr:10.0.0.4  Bcast:10.255.255.255  Mask:255.0.0.0
          inet6 addr: fe80::78d6:68ff:fefb:c004/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

===========================================
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=0.076 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.048 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.071 ms

--- 10.0.0.3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.048/0.065/0.076/0.012 ms

The child sees only the virtual adapter and can ping the parent using it

 

Mount Points and file system

To implement a container we need to isolate also the file system. It can be done using CLONE_NEWNS. Before coding , lets build a simple file system using BusyBox or BuildRoot

The simplest way is using buildroot – it is based on busybox.

Download and extract the package, use make menuconfig to enter the configuration menu, just exit and save the default selection and run make

# tar xvf ./buildroot-2017.11.2.tar.bz2
# cd buildroot-2017.11.2
# make menuconfig
# make

It will take a few minutes , after the build is finished you will find a file system in buildroot-2017.11.2/output/target

copy the content to another folder – in my example fs and add some device files to the /dev directory using mknod commands (buildroot can’t do that because it doesn’t run with sudo)

Full Example 

#define _GNU_SOURCE
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/mount.h>
#include <stdio.h>
#include <sched.h>
#include <signal.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <string.h>
#define STACK_SIZE (1024 * 1024)

static char stack[STACK_SIZE];

int setip(char *name,char *addr,char *netmask) {
    struct ifreq ifr;
    int fd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);

    strncpy(ifr.ifr_name, name, IFNAMSIZ);
    
    ifr.ifr_addr.sa_family = AF_INET;
    inet_pton(AF_INET, addr, ifr.ifr_addr.sa_data + 2);
    ioctl(fd, SIOCSIFADDR, &ifr);

    inet_pton(AF_INET, netmask, ifr.ifr_addr.sa_data + 2);
    ioctl(fd, SIOCSIFNETMASK, &ifr);

    //get flags
    ioctl(fd, SIOCGIFFLAGS, &ifr);  
    strncpy(ifr.ifr_name, name, IFNAMSIZ);
    ifr.ifr_flags |= (IFF_UP | IFF_RUNNING);
    // set flags
    ioctl(fd, SIOCSIFFLAGS, &ifr);

    return 0;
}

int child(void* arg)
{
  char c;
  sleep(1);
  sethostname("myhost", 6);

  chroot("./fs");
  chdir("/");
  mount("proc", "/proc", "proc", 0, NULL);

  setip("veth1","10.0.0.15","255.0.0.0");
  execlp("/bin/sh", "/bin/sh" , NULL);

  return 1;
}

int main()
{
  char buf[255];
  pid_t pid = clone(child, stack+STACK_SIZE,
      CLONE_NEWNET | CLONE_NEWUTS | CLONE_NEWIPC | CLONE_NEWPID | CLONE_NEWNS | SIGCHLD, NULL);

  sprintf(buf,"sudo ip link add name veth0 type veth peer name veth1 netns %d",pid);
 
  system(buf);
  setip("veth0","10.0.0.13","255.0.0.0");


  waitpid(pid, NULL, 0);
  return 0;
}

We create a child process in a new namespace (with PIDs, network, mounts, IPC and UTS) , the parent configure the virtual adapters (using ip link) and set its ip address

The child change the hostname, change the root folder to our buildroot output , change the current directory to ‘/’ , mount proc so ps and other tools will work and set an ip address.

The last step the child does is calling the busybox shell (/bin/sh)

Run this program using sudo – you will get a different shell, file system and network:

Thats it!!

You can find the code with the full Buildroot image here

This is just a simple example to understand the concept. to implement a full container you need also to add capabilities, control groups and more

 

 

 

 

 

 

Tagged

2 thoughts on “Linux – Writing a Simple Container App with Namespaces

  1. A good quick overview of namespaces!

    I’d like to suggest a minor improvement though. After building the rootfs with Buildroot, I suggest you extract output/images/rootfs.tar.gz, which is the real filesystem image. It contains the /dev entries, so you will not need to create them manually.

    The output/target/ directory does not contain /dev entries because it is not the real root filesystem. This is because Buildroot does not run as root and thus it cannot create device files directly. There’s a file called “THIS_IS_NOT_YOUR_ROOT_FILESYSTEM” in output/target/ that explains this in better detail.

    1. Correct. I just wanted to keep the example simple for learning purpose but i should fix it

Comments are closed.