DiscoverSDK

Tools for Developers

Linux VFS and Block
Layers

Liran Ben Haim
liran@discoversdk.com

T —

DiscoverSDK

Tools for Developers

@creative

COMMO N S

commons

D E E D

Attribution - ShareAlike 2.0

You are free

to copy, distribute, display, and perform the work
to make derivative works

to make commercial use of the work

Under the following conditions

Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may

distribute the resulting work only under a license identical to this
one.

For any reuse or distribution, you must make clear to others the
license terms of this work.

Any of these conditions can be waived if you get permission from
the copyright holder.

Your fair use and other rights are in no way affected by the above.

se text: http://creativecommons.org/licenses/by-sa/2.0/legalcode

Rights to Copy

This kit contains work by the
following authors:

© Copyright 2004-2009
Michael Opdenacker /Free
Electrons
michael@free-electrons.com
http://www.free-electrons.com

© Copyright 2003-2006
Oron Peled

oron@actcom.co.il
http://www.actcom.co.il/~oron

© Copyright 2004-2008
Codefidence Itd.
info@codefidence.com
http://www.codefidence.com

© Copyright 2009-2017
Bina Itd.

info@bna.co.il
http://www.bna.co.il

DiscoverSDK

Tools for Developers

Block Device Drivers

¢ Linux Drivers types:
e (Character Device Drivers
® Block Device Drivers
® Network Device Drivers

© Block Devices are used for storage

* The name “block device” comes from the fact that
the corresponding hardware typically reads and
writes a whole block at a time

PP DiscoverSDK

Tools for Developers A rC h i te Ct u re

User
Kernel \Z =

Virtual File System

v

Vv

Individual filesystems

i i

Buffer/page cache
T y

Block layer

|

Hardware

DiscoverSDK VFES

¢ Linux provides a unified Virtual File System interface:
e The VFS layer supports abstract operations.
e Specific file systems implements them.

* File operations always start with the VFS layer

® Regular file
e /dev/sdal
® /proc/cpuinfo

Pi,‘=‘$°g’ef5DK
Example - read

* User space:
X = read(fd, buffer, size);

o Kernel:
sys_read(fd , buffer, size);

SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count)
{

struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;

if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
if (ret >= 0)
file_pos_write(f.file, pos);
fdput_pos(f);

}

return ret;

DiscoverSDK

Tools for Developers

vis read

* Performs some checks and calls _ vfs read

ssize_t _ vfs_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
if (file->f_op->read)
return file->f_op->read(file, buf, count, pos);
else if (file->f_op->read_iter)
return new_sync_read(file, buf, count, pos);
else

return -EINVAL;

U DiscoverSDK

Tools for Developers

VFS

* The major VFS abstract objects:
® File - An open file (file descriptor).
® Dentry - A directory entry. Maps names to inodes
® |node - A file inode. Contains persistent information
e Superblock - descriptor of a mounted filesystem

task struct* current — dent ry —3% inode
(files->fdt->fd | d flags | i uid
d parent i gid
1 d name i size
£d=0 — > file d_inode i._ino
fd=1 f inode | _ l—Sb_
fd=2 — f path i mapping
fd=3 dentry
mnt
f flags
f_mode
f pos
. f _mapping

DiscoverSDK

Tools for Developers

File Object

* Information about an open file
® Mode

® Position
. "R

® Per process
® you can set the table size using ulimit -n

DiscoverSDK

Dentry Object

* |Information about a directory entry
®* Name

® Pointer to the inode

¢ Multiple dentries can point to a single inode

® Hard links

“Gi~/[testS 1In -s filel file3
criii~/testS 1n filel file4d

per@:~/test$

leveloper@:~/testS 1ls -1

total 168

-rw-rw-r-- 2 developer developer 10164 N7 23 16:37 filel

-rw-rw-r-- 1 developer developer 143976 N {7 23 16:37 file2

lrwxrwxrwx 1 developer developer 5 NMj723 16:37 Tilez -> filel

-rw-rw-r-- 2 developer developer 10164 N7 23 16:37 file4

developer@:~/test$ 1s -11

total 168

2386855 -rw-rw-r-- 2 developer developer 10164 N7 23 16:37 filel

2386856 -rw-rw-r-- 1 developer developer 143976 N j7 23 16:37 file2

2386857 Llrwxrwxrwx 1 developer developer 5 NI j723 16:37 file3 -> filel

2386855 -rw-rw-r-- 2 developer developer 10164 N7 23 16:37 file4d

jeveloper@:~/test$ |}

A DiscoverSDK

Tools for Developers

dcache

The VFS implements the open(2), stat(2), chmod(2),
and similar system calls.

® The pathname argument that is passed to them is

used by the VFS to search through the directory entry
cache (dcache)

This provides a very fast look-up mechanism to
translate a pathname (filename) into a specific
dentry.

Dentries live in RAM and are never saved to disc

11

DiscoverSDK

Tools for Developers

Inode Object

® unique descriptor of a file or directory
® contains permissions, timestamps, block map (data)
® Usually stored in the a special block(s) on the disk

® Inode#: integer (unique per mounted filesystem)

® Filesystem: fn(inode#) => data

DiscoverSDK

Tools for Developers

open
file
object

open
file
object

Y

dentry

open
file
object

superblock 1

f dentry

d_subdirs '
d_inode o
d_subdirs P
d_parent B
i_sb I
d sb .

i_dentries

DiscoverSDK

Tools for Developers

Superblock

The file system metadata

Defines the file system type, size, status, and other
Information about other metadata structures

Usually first block on disk (ater boot block)

Copied into (similar) memory structure on mount

DiscoverSDK

Tools for Developers

struct vismount

® Represents a mounted instance of a particular file
system

struct vfsmount {
struct dentry *mnt_root; /* root of the mounted tree */
struct super_block *mnt_sb; /* pointer to superblock */
int mnt_flags;

} __randomize_layout;

PP DiscoverSDK

Tools for Developers A rC h i te Ct u re

User
Kernel \Z =

Virtual File System

v

Vv

Individual filesystems

i i

Buffer/page cache
T y

Block layer

|

Hardware

DiscoverSDK

Tools for Developers V FS St r u Ct u re S

S_0p _[super W {_op _[file 1
[super_blockj operations | [file J ‘operationsj

. | i_op ’inode
inode . 1
[) operations |

DiscoverSDK

Tools for Developers

Registering a new FS

o Call register_file_system and pass a pointer to:
® struct file_system_type

* Fields:
® Name (/proc/filesystems)
® Flags
® Mount callback

DiscoverSDK

Tools for Developers

Mount
® mount -t myfs /dev/myblk /myfs

® The mount callback is called

* Typical implementation:
® mount _bdev/mount nodev/mount_mtd

static struct dentry *efs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)

{
}

return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);

DiscoverSDK

Tools for Developers

Filling the super block

Extents the super block to add private data

asb = kzalloc(sizeof(*asb), GFP_KERNEL);
if ('asb)

return -ENOMEM;
sb->s_fs_info = asb;

Set the block size

Read the super block data from the device
® sb_bread(sb, block_num)

Set super_operations field

DiscoverSDK

Tools for Developers

Filling the super block(2)

® Create a root inode
® Set inode_operations
® Set file_operations
e Set address_space_operations

® Create a root dentry
® d_make_root

root = adfs_1iget(sb, &root_obj);
sb->s_root = d_make_root(root);

DiscoverSDK

Tools for Developers
super_operations
alloc/read/write/clear/delete inode
put_super (release)
freeze/unfreeze/remount/sync the file system

show_options (/proc/[pid]/mounts)

statfs — statfs(2)

N’

¥ DiscoverSDK

Tools for Developers
Inode_operations

create — new inode for regular file
link/unlink/rename — add/remove/modify dir entry
symlink, readlink, get_link — sot link ops
mkdir/rmdir — new inode for directory file
mknod — new inode for device file
permission — check access permissions

lookup — called when the VFS needs to look up an
Inode in a parent directory

23

DiscoverSDK

file_operations

® open/release

® read/write

® read_iter/write_iter — async ops
® Iterate — directory content(ls)

* mmap/lock/sync/poll

o * joctl

DiscoverSDK

Tools for Developers

dentry_operations

® The filesystem can overload the standard dentry
operations

® Special cases
® Msdos 8.3 limit
® fat case insensitive

DiscoverSDK

Tools for Developers

IS /myfs
o stat(2) the path
© open(2) the path for read with O_DIRECORY

* getdents(2) to get all dentries (multiple time until it returns O)
® jterate_dir
e (alls iterate callback in file_operations for that inode

if (!IS_DEADDIR(inode)) {
ctx->pos = file->f_pos;
if (shared)
res = file->f_op->iterate_shared(file, ctx);
else

res = file->f_op->iterate(file, ctx);

DiscoverSDK

Tools for Developers

Iterate

® Checks the requested position (the user buffer can
be smaller than the directory content)

® Read the data from the device (sb_sread)

o Call dir_emit* for each directory entry

DiscoverSDK

Tools for Developers

Simple example

static int simpfs iterate(struct file *file, struct dir context *ctx)

{
struct inode *inode = file inode(file);
struct dentry *de = file->f path.dentry;
int parent = inode->i ino;

if(ctx->pos == 4)
return O;

if (ctx->pos < 2) {

if (!dir emit dots(file, ctx)) // create the . and .. directories
return 0O;

dir emit(ctx,"Dirl",4,parent,DT DIR);

dir emit(ctx, "testfs", 6, parent, DT REG);
ctx->pos = 4;

return 0;

DiscoverSDK

Tools for Developers

Inode_operations lookup

® For each directory entry name, we need to find and
fill dentry object and inode object

¢ Called when the VFS needs to look up an inode in a
parent directory. The name to look for is found in
the dentry

e (Get/allocate inode (maybe read from device)
e Call d_add(dentry,inode) ;

DiscoverSDK

Tools for Developers

Open a file
® sys_open
® do_sys_open
* do_flip_open

® path_openat
e get_ empty_flip
® do_last
* vfs_open
® do_dentry_open

¢ Set the file_operations (fops_get)
¢ Call the open callback if exists

DiscoverSDK

Tools for Developers

Read/Write

® sys_read -> vfs_read -> __ vfs_read

® sys_write -> vfs_write -> __ vfs_write

ssize_t _ vfs_write(struct file *file, const char __user *p, size_t count,
loff_t *pos)
{

if (file->f_op->write)

return file->f_op->write(file, p, count, pos);
else if (file->f_op->write_iter)

return new_sync_write(file, p, count, pos);
else

return -EINVAL;

DiscoverSDK

Tools for Developers

Generic Functions

int generic_file_mmap(struct file *, struct vm_area_struct *);

int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);

ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
ssize_t _ generic_file_write_iter(struct kiocb *, struct iov_iter *);
ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
ssize_t generic_perform_write(struct file *, struct iov_iter *, loff_t);

DiscoverSDK

Tools for Developers
l1bfs
/ts/libfs.c — library for filesystem writer

simple_* functions
e simple_lookup, simple_mkdir,

Simple file_operations

Simple inode_operations

PP DiscoverSDK

Tools for Developers A rC h i te Ct u re

User
Kernel \Z =

Virtual File System

v

Vv

Individual filesystems

i i

Buffer/page cache
T y

Block layer

|

Hardware

DiscoverSDK

Tools for Developers

Integration with Memory Subsystem

® The address_space object
® Used to group and manage pages in the page cache
® One per file

® The “physical analogue” to the virtual vim_area_struct
e Radix tree enables quick searching for the desired page, given only the file offset

® The address_space_operation structure
® |mplement reading and writing pages

® You can choose not to use it

® Read and write directly

® Examples: efivarfs , openpromfs,
pseudo filesystems like proc, sysfs

Nt

P DiscoverSDK

Tools for Developers

address_space_operations

readpage — read a page from backing store
writepage - write a dirty page to backing store
readpages/writepages

set_page_dirty

write_begin - Called by the generic buffered write code to
ask the filesystem to prepare to write len bytes at the
given offset in the file

write_end- called after a successful write_begin, and
data copy

36

DiscoverSDK

Tools for Developers

The Page Cache

® Page cache can read individual disk blocks whose size is
determined by the filesystem

® Use sb_bread to read the corresponding block from the block
device and store the block in a buffer

® or just return it from memory

® The block device specified in the super block

Page

I 1 I 1

Buffer 1 Buffer 2 Buffer 3 Buffer 4

N’

¥ DiscoverSDK

Tools for Developers

The Page Cache

Use mark_buffer_dirty to flag the buffer as dirty
® Need their data to be synced to disk

After sb_bread, the buffer_head and the data block
contents are pinned in memory. The page cache won't
remove them

Use brelse to release it and let the kernel free the
buffer_head (only frees when there is a memory

pressure)

If kernel decides to free a buffer_head, it will sync its
data to disk, but only if the buffer_head marked dirty

383

DiscoverSDK

Tools for Developers

Read/Write Examples

if (!(bh = sb bread(info->vfs sb, block)))
{

}
memcpy (buf, bh->b data + offset, len);

brelse(bh);

return -EIO;

if (!(bh = sb bread(info->vfs sb, block)))
{

}
memcpy(bh->b data + offset, buf, len);

mark buffer dirty(bh);
. brelse(bh);

return -EIO;

DiscoverSDK

Simple readpage()

static int simp readpage(struct file *file, struct page *page)

{
}

return mpage readpage(page, find and map block fn);

/*
* This is the worker routine which does all the work of mapping the disk
* blocks and constructs largest possible bios, submits them for IO if the
* blocks are not contiguous on the disk.
*
* We pass a buffer_head back and forth and use its buffer_mapped() flag to
* represent the validity of its disk mapping and to decide when to do the next
* get_block() call.
*/
static struct bio *
do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
sector_t *last_block_in_bio, struct buffer_head *map_bh,
unsigned long *first_logical_block, get_block_t get_block,

gfp_t gfp)

A DiscoverSDK

Tools for Developers

bio — |10 Request

Historically, a buffer_head was used to map a single
block within a page, and of course as the unit of I/0
through the filesystem and block layers.

Nowadays the basic 170 unit is the bio
® See EXT4 readpages for example (submit_bio)

buffer_heads are used for:
® extracting block mappings (via a get_block_t call),
® tracking state within a page (via a page_mapping)

® wrapping bio submission for backward compatibility
reasons (e.g. submit_bh).

41

DiscoverSDK

Tools for Developers

submit bh

o Calls submit_bh _wbc

® From here on down, it's all bio
® bio_alloc
® bio_add_page
®
® submit _bio
® To the request layer

® sb bread -> -> submit _bh -> submit bio

© See code in fs/buffer.c

PP DiscoverSDK

Tools for Developers A rC h i te Ct u re

User
Kernel \Z =

Virtual File System

v

Vv

Individual filesystems

i i

Buffer/page cache
T V

Block layer

|

Hardware

N’

¥ DiscoverSDK

Tools for Developers

Inside the block layer

Buffer/page cache

AR

Block layer

AN .

Block Block
driver driver

P

I/O scheduler

v v

Block
driver

Block Block
driver driver

Hardware

44

N’

¥ DiscoverSDK

Tools for Developers

Inside the block layer (2)

The block layer allows block device drivers to receive
|/0 requests, and is in charge of [/0 scheduling

/0 scheduling allows to
® Merge requests so that they are of greater size

® Re-order requests so that the disk head movement is as
optimized as possible

Several 1/0 schedulers with different policies are
available in Linux.

A block device driver can handle the requests before or

after they go through the I/0 scheduler
45

N’

¥ DiscoverSDK

Tools for Developers

Two main types of drivers

Most of the block device drivers are implemented
below the |/0O scheduler, to take advantage of the /0
scheduling

e Hard disk drivers, CD-ROM drivers, etc.

For some drivers however, it doesn't make sense to use
the 10 scheduler

¢ RAID and volume manager, like md
® The special loop driver
® Memory-based block devices

40

N’

¥ DiscoverSDK

Tools for Developers

Available 1/0 schedulers

/0 schedulers in current kernels
e Noop, for non-disk based block devices

® Deadline, tries to guarantee that an 1/0 will be served
within a deadline

e CFQ, the Complete Fairness Queuing, the default
scheduler, tries to guarantee fairness between users of a
block device

The current scheduler for a device can be get and set
In /sys/block/<dev>/queue/scheduler

47

N’

¥ DiscoverSDK

Tools for Developers

Looking at the code

0

The block device layer is implemented in the block/
directory of the kernel source tree

® This directory also contains the |/0O scheduler code, in
the

*-losched.c files.

A few simple block device drivers are implemented in
drivers/block/, including

® |oop.c, the loop driver that allows to see a regular file as a
block device

® brd.c, a ramdisk driver

® nbd.c, a network-based block device driver
48

N’

¥ DiscoverSDK

Tools for Developers

Implementing a block device driver

A block device driver must implement a set of
operations to be registered in the block layer and
receive requests from the kernel

A block device driver can directly implement this
set of operation. However, as in many areas in the
kernel, subsystems have been created to factorize
common code of drivers for devices of the same
type
e SCSI devices

PATA/SATA devices

[]
e MMC/SD devices
® efc.

49

N’

¥ DiscoverSDK

Tools for Developers

Implementing a block device driver (2)

Generic block layer

4

N\

Block SCSI IDE MMC
driver subsystem subsystem subsystem
\ \
SCSI libata usb IDE MMC/SD
driver subsystem storage driver driver
PATA/SATA
driver

50

N’

¥ DiscoverSDK

Tools for Developers

Registering the major

The first step in the initialization of a block device driver
IS the registration of the major number

® int register_blkdev(unsigned int major,
const char *name);

® Major can be O, in which case it is dynamically allocated

® Once registered, the driver appears in /proc/devices with the
other block device drivers

Of course, at cleanup time, the major must be
unregistered

® void unregister_blkdev(unsigned int major, const char
*name);

The prototypes of these functions are in <linux/fs.nh>
51

N’

¥ DiscoverSDK

Tools for Developers

struct gendisk

The structure representing a single block device,
defined in <linux/genhd.h>

iInt major, major of the device driver

Int first_minor, minor of this device. A block device
can have several minors when it is partitionned

Int minors, number of minors. 1 for non-
partitionable devices

struct block_device_operations *fops, pointer to the
list of block device operations

struct request_queue *queue, the queue of requests
sector_t capacity, size of the block device in sectors

52

N’

¥ DiscoverSDK

Initializing a disk

Allocate a gendisk structure
struct gendisk *alloc_disk(int minors)

minors tells the number of minors to be allocated for this
disk. Usually 1, unless your device can be partitionned

Allocate a request queue
struct request_queue *blk_init_queue
(request_fn_proc *rfn, spinlock_t *lock)

rfn is the request function (covered later). lock is a optional
spinlock needed to protect the request queue against
concurrent access. If NULL, a default spinlock is used

53

A DiscoverSDK

Tools for Developers

Initializing a disk (2)

Initialize the gendisk structure

Fields major, first_minor, fops, disk_name and queue
should at the minimum be initialized

private_data can be used to store a pointer to some
private information for the disk

Set the capacity
void set_capacity(struct gendisk *disk, sector_t size)

The size is a number of 512-bytes sectors. sector_t
Is 64 bits wide on 64 bits architectures, 32 bits on
32 bits architecture, unless CONFIG_LBD (large
block devices) has been selected

54

N’

¥ DiscoverSDK

Tools for Developers

Initializing a disk (3)

Add the disk to the system
void add_disk(struct gendisk *disk);

The block device can now be accessed by the system,
so the driver must be fully ready to handle I/0O
requests before calling add_disk(). I/0 requests can
even take place during the call to add_disk().

55

DiscoverSDK

Tools for Developers

Unregistering a disk

¢ Unregister the disk
void del_gendisk(struct gendisk *gp);

® Free the request queue
void blk_cleanup_queue(struct request_queue *);

® Drop the reference taken in alloc_disk()
void put_disk(struct gendisk *disk);

N’

¥ DiscoverSDK

Tools for Developers

block_device_operations

A set of function pointers

open() and release(), called when a device handled
by the driver is opened and closed

loctl() for driver specific operations. unlocked_ioctl()
Is the non-BKL variant, and compat_ioctl() for 32
bits processes running on a 64 bits kernel

direct_access() required for XIP support, see
http://Ilwn.net/Articles/135472/

media_changed() and revalidate() required for
removable media support

getgeo(), to provide geometry informations to
userspace

57

DiscoverSDK

Tools for Developers

A simple request() function

static void foo request(struct request_ queue *q)

struct request *req;
while ((req = elv_next request(q)) != NULL) {
if (! blk fs request(req)) {
_ blk end request(req, 1, reg->nr_ sectors << 9);

continue;

/* Do the transfer here */

__blk end request(req, 0, reg->nr_sectors << 9);

et &

DiscoverSDK

Tools for Developers

A simple request() function (2)

Information about the transfer are available in the
struct request

® sector, the position in the device at which the transfer
should be made

® current _nr_sectors, the number of sectors to transfer

® buffer, the location in memory where the data should be
read or written to

® rg_data_dir(), the type of transfer, either READ or WRITE

__blk_end_request() or blk_end_request() is used to
notify the completion of a request. _ blk_end_request()
must be used when the queue lock is already held

59

piscoverSDK ~ Data structures

Tools for Developers

open()
release()

ioctl()
_ media changed()
: revalidate()
major getgeo()
first minor ..
disk name S
;ﬁgﬁ; current nr sectors
private data request_fn - buif?ﬁc
capacity List of requests — r q:_qls

N’

¥ DiscoverSDK

Tools for Developers

Request queue configuration (1)

blk_queue_bounce_limit(queue, uc4)

Tells the kernel the highest physical address that the
device can handle. Above that address, bouncing will
be made. BLK_BOUNCE_HIGH, BLK_BOUNCE_ISA and
BLK_BOUNCE_ANY are special values

e HIGH: will bounce if the pages are in high-memory

e [SA: will bounce if the pages are not in the ISA 16 Mb
zone

e ANY: will not bounce

ol

A DiscoverSDK

Tools for Developers

Request queue configuration (2)

blk_queue_max_sectors(queue, unsigned int)
Tell the kernel the maximum number of 512 bytes
sectors for each request.

blk_queue_max_phys_segments(queue, unsigned
short)

blk_queue_max_hw_segments(queue, unsigned short)
Tell the kernel the maximum number of non-memory-
adjacent segments that the driver can handle in a
single request (default 123).

blk_queue_max_segment_size(queue, unsigned int)
Tell the kernel how large a single request segment can

be
62

N’

¥ DiscoverSDK

Tools for Developers

Request queue configuration (3)

blk_queue_segment_boundary(queue, unsigned long mask)
Tell the kernel about memory boundaries that your device cannot
handle inside a given buffer. By default, no boundary.

blk_queue_dma_alignement(queue, int mask)
Tell the kernel about memory alignment constraints of your
device. By default, 512 bytes alighment.

blk_queue_hardsect_size(queue, unsigned short max)

Tell the kernel about the sector size of your device. The requests
will be aligned and a multiple of this size, but the communication
is still in number of 512 bytes sectors.

63

A DiscoverSDK

Tools for Developers

Inside a request

A request is composed of several segments, that are
contiguous on the block device, but not necessarily
contiguous in physical memory

A struct request is in fact a list of struct bio

A bio is the descriptor of an 1/0 request submitted to
the block layer. bios are merged together in a struct
request by the 170 scheduler.

As a bio might represent several pages of data, It Is
composed of several struct bio_vec, each of them
representing a page of memory

o4

DiscoverSDK

Tools for Developers

Inside a request (2)
~~[sie -

bi sector bi sector

bi next bi next

bi bdev bi bdev

i l_aiTvcnt l.:iTvcnt
e bi io_vec bi io_vec

nr_sectors

q —p
s btovee

bv_page bv_page
bv_len bv_len
bv offset bv offset
bv_page bv_page
bv_len bv_len
bv offset bv offset

DiscoverSDK

Tools for Developers

Request example

-

I Memory

i

0 4096 0 4096
0 / 4096 0 N 4096
bv_offset| bv_page bv_len bv_offset| bv_page bv_len

bio

sector=1024
nr_sectors=32

bi sector=1024

bi next

bi size=8192
bi vent=2
bi io_vec

>

bi sector=1040
bi next

bi size=8192
bi vent=2

bi io vec

Block device

1024

DiscoverSDK

Request Hooks

struct block_device *blkdev;

blkdev = lookup_bdev(“/dev/sda”,0);
blkdev_queue = bdev_get_queue(blkdev);
original_request_fn = blkdev_queue->request_fn;
blkdev_queue->request_fn = my_request_fn;

void my_request_fn(struct request_queue *q, struct bio *bio) {
printk ("we are passing bios.\n");
// trace, filter, encrypt, ...
original_request_fn (qg, bio);
return;

DiscoverSDK

Tools for Developers

Asynchronous operations

® If you handle several requests at the same time, which is
often the case when handling them in asynchronous manner,
you must dequeue the requests from the queue :
void blkdev_dequeue_request(struct request *req);

* If needed, you can also put a request back in the queue :
void elv_requeue_request(struct request_queue *queue,
struct request *req);

Nt

P DiscoverSDK

Tools for Developers

Asynchronous operations (2)

Once the request is outside the queue, it's the

responsibility of the driver to process all segments of
the request

Either by looping until blk_end_request() returns O

struct bio vec *bvec;
struct req iterator iter;
rq for each segment(bvec, rq, iter)

{
/* rg->sector contains the current sector
page address(bvec->bv _page) + bvec->bv offset points to the data
bvec->bv len is the length */
rg->sector += bvec->bv len / KERNEL SECTOR SIZE;
}

blk end request(rq, 0, rg->nr sectors << 9);

69

Y DiscoverSDK DMA

Tools for Developers

The block layer provides an helper function to «
convert » a request to a scatter-gather list :
Int blk_rg_map_sg(struct request_queue *q,
struct request *rq,
struct scatterlist *sglist)

sglist must be a pointer to an array of struct scatterlist,
with enough entries to hold the maximum number of
segments in a request. This number is specified at
queue Initialization using
blk_queue_max_hw_segments().

The function returns the actual number of scatter
gather list entries filled.

70

¥ DiscoversDk - DMA (2)

Once the scatterlist is generated, individual segments
must be mapped at addresses suitable for DMA, using :
int dma_map_sg(struct device *dey,

struct scatterlist *sglist,

Int count,

enum dma_data_direction dir);

dev Is the device on which the DMA transfer will be made

dir is the direction of the transfer (DMA_TO_DEVICE,
DMA_FROM_DEVICE, DMA_BIDIRECTIONAL)

The addresses and length of each segment can be found
using sg_dma_addr() and sg_dma_len() on scatterlist
entries.

/1

DiscoverSDK — DVIA (3)

© After the DMA transfer completion, the segments must
be unmapped, using
Int dma_unmap_sg(struct device *dey,
struct scatterlist *sglist,
Int hwcount,
enum dma_data_direction dir)

P Discoversok MMIC / SD

Tools for Developers

Bkl

MMC block device driver
CONFIG MMC BLOCK
drivers/mmc/card/{block,queue}.c

MMC Core
CONFIG_ MMC
drivers/mmc/core/

Vv

MMC Host Driver
CONFIG MMC ...
drivers/mmc/host/...

¢

DiscoversDk - MMC host driver

For each host

® struct mmc_host *mmec_alloc_host(int extra,
struct device *dev)

® |nitialize struct mmc_host fields: caps, ops,
max_phys_segs, max_hw_segs, max_blk_size,
max_blk_count, max_req_size

® int mmc_add_host(struct mmc_host *host)

At unregistration
® void mmc_remove_host(struct mmc_host *host)
® void mmc_free_host(struct mmc_host *host)

/4

¢

DiscoverSDK- MM C host driver (2)

The mmc_host->ops field points to a mmc_host_ops
structure
® Handle an |/0 request

void (*request)(struct mmc_host *host,
struct mmc_request *req);

e Set configuration settings
void (*set_ios)(struct mmc_host *host,
struct mmec_ios *i0s);

® Get read-only status
iInt (*get_ro)(struct mmc_host *host);

® (et the card presence status
int (*get_cd)(struct mmc_host *host);

/5

@.iu:w

2017

1IN

NIYTN NIAI71207 1ANNNY7 ,DNNKD DTN0NE DMANN DX NI7A7 0'9NNYWN7 DWOXNN DANANN 0N2'N0 7710 2017 7271 ix yiaw
.DI'D NIDIN NNAN ['O9NAN *A'0IVI'RN NIN'DT7 NIN'RNNN NTIAW NIAZITINNT QuNiNYI

‘00121 NIIINNOA DITOINNI N'AI7IID0N NFTNA D'POIVA D'VAZY DNI'0 RIXNT IDIN 71701 701 ,TM™? *7170n 8 NNN D'TAINA DNI'MON
— Oracle n7an 7w xI'n nfani NN Ty
Cloud platforms | DevOps | Development | Database | Analytics & Big Data
The digital transformation - 1oT & Mobile trends | Technology Managers & Leaders | After Event Workshops

N21712002 NYA7 D'ONNWNY NWON'T 2'AX N2 o' 1 1 mrpn'w After Event Workshops 7w ot 217! 70 ik viaw ,nmwin ma
.DevOps -a1 niN'o2a 0'D1NdN 0'RWI [1IAN2 NIMYTNE NINTRNA N> NIINNY7I

,Oracle nrarnnva wn'wn 07w ni7n'n NX DoNn'71 [DTYNNY? D37 NN NIT
,INIWI D'7OYNI NAI1IDVN N'7'APA D'NNINA IV DX VINYY
N'WIX7NA DDNYZ1D' NN DOpPNY? D27 1V'0! TWN D"WYN NIINNSI NIMAI7IDL , NN DY NNYY
10100 7W "' Yonal [IThn WM™ M '‘Foyi man 1w n7val nrrine Networking ntnnn nna'a
Maximize Your Oracle Experience

R POt NNL T -0 DYDY TOINN TN YineRn
N0 v I'm | otvixpzn oMo | "anam 19-23
2'ax 7n ,no7Tn o i'a ' |After Event Workshops | 'anana 26-27

. JOHN BRYCE
ORACLE ITalV AT PO THON

a matrix company

DiscoverSDK

Tools for Developers

Thank You

- .

