
Linux VFS and Block
Layers

1

Liran Ben Haim
liran@discoversdk.com

Rights to Copy

� Attribution – ShareAlike 2.0

� You are free

to copy, distribute, display, and perform the work

to make derivative works

to make commercial use of the work

Under the following conditions

Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under a license identical to this
one.

For any reuse or distribution, you must make clear to others the
license terms of this work.

Any of these conditions can be waived if you get permission from
the copyright holder.

Your fair use and other rights are in no way affected by the above.

License text: http://creativecommons.org/licenses/by-sa/2.0/legalcode

� This kit contains work by the
following authors:

� © Copyright 2004-2009
Michael Opdenacker /Free
Electrons
michael@free-electrons.com
http://www.free-electrons.com

� © Copyright 2003-2006
Oron Peled
oron@actcom.co.il
http://www.actcom.co.il/~oron

� © Copyright 2004–2008
Codefidence ltd.
info@codefidence.com
http://www.codefidence.com

� © Copyright 2009–2017
Bina ltd.
info@bna.co.il
http://www.bna.co.il

2

Block Device Drivers
� Linux Drivers types:

� Character Device Drivers

� Block Device Drivers
� Network Device Drivers

� Block Devices are used for storage

� The name “block device” comes from the fact that
the corresponding hardware typically reads and
writes a whole block at a time

3

Architecture

Virtual File System

Individual filesystems

Buffer/page cache

Block layer

User application User application

Kernel
User

Hardware
4

VFS

� Linux provides a unified Virtual File System interface:
� The VFS layer supports abstract operations.

� Specific file systems implements them.

� File operations always start with the VFS layer
� Regular file
� /dev/sda1

� /proc/cpuinfo
� …

5

Example - read
� User space:

x = read(fd, buffer, size);

� Kernel:
sys_read(fd , buffer, size);

6

vfs_read
� Performs some checks and calls __vfs_read

7

VFS
� The major VFS abstract objects:

� File - An open file (file descriptor).

� Dentry - A directory entry. Maps names to inodes
� Inode - A file inode. Contains persistent information
� Superblock - descriptor of a mounted filesystem

8

File Object
� Information about an open file

� Mode

� Position
� …

� Per process
� you can set the table size using ulimit -n

9

Dentry Object
� Information about a directory entry

� Name

� Pointer to the inode

� Multiple dentries can point to a single inode

� Hard links

10

dcache
� The VFS implements the open(2), stat(2), chmod(2),

and similar system calls.
� The pathname argument that is passed to them is

used by the VFS to search through the directory entry
cache (dcache)

� This provides a very fast look-up mechanism to
translate a pathname (filename) into a specific
dentry.

� Dentries live in RAM and are never saved to disc

11

Inode Object
� unique descriptor of a file or directory

� contains permissions, timestamps, block map (data)

� Usually stored in the a special block(s) on the disk

� inode#: integer (unique per mounted filesystem)

� Filesystem: fn(inode#) => data

12

13

Superblock
� The file system metadata

� Defines the file system type, size, status, and other
information about other metadata structures

� Usually first block on disk (ater boot block)

� Copied into (similar) memory structure on mount

14

struct vfsmount
� Represents a mounted instance of a particular file

system

15

Architecture

Virtual File System

Individual filesystems

Buffer/page cache

Block layer

User application User application

Kernel
User

Hardware
16

VFS Structures

17

Registering a new FS
� Call register_file_system and pass a pointer to:

� struct file_system_type

� Fields:
� Name (/proc/filesystems)

� Flags
� Mount callback

18

Mount
� mount –t myfs /dev/myblk /myfs

� The mount callback is called

� Typical implementation:
� mount_bdev/mount_nodev/mount_mtd

19

Filling the super block
� Extents the super block to add private data

� Set the block size

� Read the super block data from the device
� sb_bread(sb, block_num)

� Set super_operations field

20

Filling the super block(2)
� Create a root inode

� Set inode_operations

� Set file_operations
� Set address_space_operations

� Create a root dentry
� d_make_root

21

super_operations
� alloc/read/write/clear/delete inode

� put_super (release)

� freeze/unfreeze/remount/sync the file system

� show_options (/proc/[pid]/mounts)

� statfs – statfs(2)

22

inode_operations
� create – new inode for regular file

� link/unlink/rename – add/remove/modify dir entry

� symlink, readlink, get_link – sot link ops

� mkdir/rmdir – new inode for directory file

� mknod – new inode for device file

� permission – check access permissions

� lookup – called when the VFS needs to look up an
inode in a parent directory

23

file_operations
� open/release

� read/write

� read_iter/write_iter – async ops

� iterate – directory content(ls)

� mmap/lock/sync/poll

� *_ioctl

� …

24

dentry_operations
� The filesystem can overload the standard dentry

operations

� Special cases
� Msdos 8.3 limit
� fat case insensitive

25

ls /myfs
� stat(2) the path

� open(2) the path for read with O_DIRECORY

� getdents(2) to get all dentries (multiple time until it returns 0)

� iterate_dir

� Calls iterate callback in file_operations for that inode

26

iterate
� Checks the requested position (the user buffer can

be smaller than the directory content)

� Read the data from the device (sb_sread)

� Call dir_emit* for each directory entry

27

Simple example

28

inode_operations lookup
� For each directory entry name, we need to find and

fill dentry object and inode object

� Called when the VFS needs to look up an inode in a
parent directory. The name to look for is found in
the dentry
� Get/allocate inode (maybe read from device)

� Call d_add(dentry,inode) ;

29

Open a file
� sys_open

� do_sys_open

� do_flip_open

� path_openat
� get_empty_flip
� do_last

� vfs_open
� do_dentry_open

� Set the file_operations (fops_get)
� Call the open callback if exists

30

Read/Write
� sys_read -> vfs_read -> __vfs_read

� sys_write -> vfs_write -> __vfs_write

31

Generic Functions

32

libfs
� /fs/libfs.c – library for filesystem writer

� simple_* functions
� simple_lookup, simple_mkdir, ….

� Simple file_operations

� Simple inode_operations

33

Architecture

Virtual File System

Individual filesystems

Buffer/page cache

Block layer

User application User application

Kernel
User

Hardware
34

Integration with Memory Subsystem
� The address_space object

� Used to group and manage pages in the page cache

� One per file

� The “physical analogue” to the virtual vm_area_struct
� Radix tree enables quick searching for the desired page, given only the file offset

� The address_space_operation structure

� Implement reading and writing pages

� You can choose not to use it

� Read and write directly

� Examples: efivarfs , openpromfs,
pseudo filesystems like proc, sysfs

35

address_space_operations
� readpage – read a page from backing store

� writepage - write a dirty page to backing store

� readpages/writepages

� set_page_dirty

� write_begin - Called by the generic buffered write code to
ask the filesystem to prepare to write len bytes at the
given offset in the file

� write_end– called after a successful write_begin, and
data copy

36

The Page Cache
� Page cache can read individual disk blocks whose size is

determined by the filesystem

� Use sb_bread to read the corresponding block from the block
device and store the block in a buffer

� or just return it from memory

� The block device specified in the super block

37

The Page Cache
� Use mark_buffer_dirty to flag the buffer as dirty

� Need their data to be synced to disk

� After sb_bread, the buffer_head and the data block
contents are pinned in memory. The page cache won't
remove them

� Use brelse to release it and let the kernel free the
buffer_head (only frees when there is a memory
pressure)

� If kernel decides to free a buffer_head, it will sync its
data to disk, but only if the buffer_head marked dirty

38

Read/Write Examples

39

Simple readpage()

40

bio – IO Request
� Historically, a buffer_head was used to map a single

block within a page, and of course as the unit of I/O
through the filesystem and block layers.

� Nowadays the basic I/O unit is the bio
� See EXT4 readpages for example (submit_bio)

� buffer_heads are used for:
� extracting block mappings (via a get_block_t call),
� tracking state within a page (via a page_mapping)
� wrapping bio submission for backward compatibility

reasons (e.g. submit_bh).

41

submit_bh
� Calls submit_bh_wbc

� From here on down, it's all bio
� bio_alloc
� bio_add_page
� …
� submit_bio

� To the request layer

� sb_bread -> …. -> submit_bh -> submit_bio

� See code in fs/buffer.c

42

Architecture

Virtual File System

Individual filesystems

Buffer/page cache

Block layer

User application User application

Kernel
User

Hardware
43

Inside the block layer
Buffer/page cache

Block layer

Hardware

Block
driver

I/O scheduler

Block
driver

Block
driver

Block
driver

Block
driver

44

Inside the block layer (2)
� The block layer allows block device drivers to receive

I/O requests, and is in charge of I/O scheduling

� I/O scheduling allows to
� Merge requests so that they are of greater size
� Re-order requests so that the disk head movement is as

optimized as possible

� Several I/O schedulers with different policies are
available in Linux.

� A block device driver can handle the requests before or
after they go through the I/O scheduler

45

Two main types of drivers

� Most of the block device drivers are implemented
below the I/O scheduler, to take advantage of the I/O
scheduling
� Hard disk drivers, CD-ROM drivers, etc.

� For some drivers however, it doesn't make sense to use
the IO scheduler
� RAID and volume manager, like md
� The special loop driver

� Memory-based block devices

46

Available I/O schedulers
� I/O schedulers in current kernels

� Noop, for non-disk based block devices

� Deadline, tries to guarantee that an I/O will be served
within a deadline

� CFQ, the Complete Fairness Queuing, the default
scheduler, tries to guarantee fairness between users of a
block device

� The current scheduler for a device can be get and set
in /sys/block/<dev>/queue/scheduler

47

Looking at the code
� The block device layer is implemented in the block/

directory of the kernel source tree
� This directory also contains the I/O scheduler code, in

the
*-iosched.c files.

� A few simple block device drivers are implemented in
drivers/block/, including
� loop.c, the loop driver that allows to see a regular file as a

block device

� brd.c, a ramdisk driver
� nbd.c, a network-based block device driver

48

Implementing a block device driver

� A block device driver must implement a set of
operations to be registered in the block layer and
receive requests from the kernel

� A block device driver can directly implement this
set of operation. However, as in many areas in the
kernel, subsystems have been created to factorize
common code of drivers for devices of the same
type
� SCSI devices
� PATA/SATA devices
� MMC/SD devices
� etc.

49

Implementing a block device driver (2)

Generic block layer

Block
driver

SCSI
subsystem

SCSI
driver

libata
subsystem

PATA/SATA
driver

IDE
subsystem

IDE
driver

MMC
subsystem

MMC/SD
driver

usb
storage

50

Registering the major
� The first step in the initialization of a block device driver

is the registration of the major number
� int register_blkdev(unsigned int major,

const char *name);
� Major can be 0, in which case it is dynamically allocated
� Once registered, the driver appears in /proc/devices with the

other block device drivers

� Of course, at cleanup time, the major must be
unregistered
� void unregister_blkdev(unsigned int major, const char

*name);

� The prototypes of these functions are in <linux/fs.h>

51

struct gendisk

� The structure representing a single block device,
defined in <linux/genhd.h>
� int major, major of the device driver
� int first_minor, minor of this device. A block device

can have several minors when it is partitionned
� int minors, number of minors. 1 for non-

partitionable devices
� struct block_device_operations *fops, pointer to the

list of block device operations

� struct request_queue *queue, the queue of requests
� sector_t capacity, size of the block device in sectors

52

Initializing a disk
� Allocate a gendisk structure

struct gendisk *alloc_disk(int minors)

minors tells the number of minors to be allocated for this
disk. Usually 1, unless your device can be partitionned

� Allocate a request queue
struct request_queue *blk_init_queue

(request_fn_proc *rfn, spinlock_t *lock)

rfn is the request function (covered later). lock is a optional
spinlock needed to protect the request queue against
concurrent access. If NULL, a default spinlock is used

53

Initializing a disk (2)
� Initialize the gendisk structure

Fields major, first_minor, fops, disk_name and queue
should at the minimum be initialized
private_data can be used to store a pointer to some
private information for the disk

� Set the capacity
void set_capacity(struct gendisk *disk, sector_t size)

The size is a number of 512-bytes sectors. sector_t
is 64 bits wide on 64 bits architectures, 32 bits on
32 bits architecture, unless CONFIG_LBD (large
block devices) has been selected

54

Initializing a disk (3)

� Add the disk to the system
void add_disk(struct gendisk *disk);

The block device can now be accessed by the system,
so the driver must be fully ready to handle I/O
requests before calling add_disk(). I/O requests can
even take place during the call to add_disk().

55

Unregistering a disk
� Unregister the disk

void del_gendisk(struct gendisk *gp);

� Free the request queue
void blk_cleanup_queue(struct request_queue *);

� Drop the reference taken in alloc_disk()
void put_disk(struct gendisk *disk);

56

block_device_operations
� A set of function pointers

� open() and release(), called when a device handled
by the driver is opened and closed

� ioctl() for driver specific operations. unlocked_ioctl()
is the non-BKL variant, and compat_ioctl() for 32
bits processes running on a 64 bits kernel

� direct_access() required for XIP support, see
http://lwn.net/Articles/135472/

� media_changed() and revalidate() required for
removable media support

� getgeo(), to provide geometry informations to
userspace

57

A simple request() function
static void foo_request(struct request_queue *q)

{

struct request *req;

while ((req = elv_next_request(q)) != NULL) {

if (! blk_fs_request(req)) {

__blk_end_request(req, 1, req->nr_sectors << 9);

continue;

}

/* Do the transfer here */

__blk_end_request(req, 0, req->nr_sectors << 9);

}

}

58

A simple request() function (2)
� Information about the transfer are available in the

struct request
� sector, the position in the device at which the transfer

should be made

� current_nr_sectors, the number of sectors to transfer
� buffer, the location in memory where the data should be

read or written to
� rq_data_dir(), the type of transfer, either READ or WRITE

� __blk_end_request() or blk_end_request() is used to
notify the completion of a request. __blk_end_request()
must be used when the queue lock is already held

59

Data structures

60

Request queue configuration (1)
� blk_queue_bounce_limit(queue, u64)

Tells the kernel the highest physical address that the
device can handle. Above that address, bouncing will
be made. BLK_BOUNCE_HIGH, BLK_BOUNCE_ISA and
BLK_BOUNCE_ANY are special values
� HIGH: will bounce if the pages are in high-memory

� ISA: will bounce if the pages are not in the ISA 16 Mb
zone

� ANY: will not bounce

61

Request queue configuration (2)
� blk_queue_max_sectors(queue, unsigned int)

Tell the kernel the maximum number of 512 bytes
sectors for each request.

� blk_queue_max_phys_segments(queue, unsigned
short)
blk_queue_max_hw_segments(queue, unsigned short)
Tell the kernel the maximum number of non-memory-
adjacent segments that the driver can handle in a
single request (default 128).

� blk_queue_max_segment_size(queue, unsigned int)
Tell the kernel how large a single request segment can
be

62

Request queue configuration (3)
� blk_queue_segment_boundary(queue, unsigned long mask)

Tell the kernel about memory boundaries that your device cannot
handle inside a given buffer. By default, no boundary.

� blk_queue_dma_alignement(queue, int mask)
Tell the kernel about memory alignment constraints of your
device. By default, 512 bytes alignment.

� blk_queue_hardsect_size(queue, unsigned short max)
Tell the kernel about the sector size of your device. The requests
will be aligned and a multiple of this size, but the communication
is still in number of 512 bytes sectors.

63

Inside a request
� A request is composed of several segments, that are

contiguous on the block device, but not necessarily
contiguous in physical memory

� A struct request is in fact a list of struct bio

� A bio is the descriptor of an I/O request submitted to
the block layer. bios are merged together in a struct
request by the I/O scheduler.

� As a bio might represent several pages of data, it is
composed of several struct bio_vec, each of them
representing a page of memory

64

Inside a request (2)

65

Request example

66

Request Hooks
struct block_device *blkdev;

blkdev = lookup_bdev(“/dev/sda”,0);
blkdev_queue = bdev_get_queue(blkdev);
original_request_fn = blkdev_queue->request_fn;
blkdev_queue->request_fn = my_request_fn;

void my_request_fn(struct request_queue *q, struct bio *bio) {
printk ("we are passing bios.\n");
// trace, filter, encrypt, …
original_request_fn (q, bio);
return;

}

67

Asynchronous operations
� If you handle several requests at the same time, which is

often the case when handling them in asynchronous manner,
you must dequeue the requests from the queue :
void blkdev_dequeue_request(struct request *req);

� If needed, you can also put a request back in the queue :
void elv_requeue_request(struct request_queue *queue,
struct request *req);

68

Asynchronous operations (2)
� Once the request is outside the queue, it's the

responsibility of the driver to process all segments of
the request

� Either by looping until blk_end_request() returns 0

� Or by using the rq_for_each_segment() macrostruct bio_vec *bvec;
struct req_iterator iter;
rq_for_each_segment(bvec, rq, iter)
{

/* rq->sector contains the current sector
page_address(bvec->bv_page) + bvec->bv_offset points to the data
bvec->bv_len is the length */

rq->sector += bvec->bv_len / KERNEL_SECTOR_SIZE;
}

blk_end_request(rq, 0, rq->nr_sectors << 9);
69

DMA
� The block layer provides an helper function to «

convert » a request to a scatter-gather list :
int blk_rq_map_sg(struct request_queue *q,

struct request *rq,
struct scatterlist *sglist)

� sglist must be a pointer to an array of struct scatterlist,
with enough entries to hold the maximum number of
segments in a request. This number is specified at
queue initialization using
blk_queue_max_hw_segments().

� The function returns the actual number of scatter
gather list entries filled.

70

DMA (2)
� Once the scatterlist is generated, individual segments

must be mapped at addresses suitable for DMA, using :
int dma_map_sg(struct device *dev,

struct scatterlist *sglist,
int count,
enum dma_data_direction dir);

� dev is the device on which the DMA transfer will be made

� dir is the direction of the transfer (DMA_TO_DEVICE,
DMA_FROM_DEVICE, DMA_BIDIRECTIONAL)

� The addresses and length of each segment can be found
using sg_dma_addr() and sg_dma_len() on scatterlist
entries.

71

DMA (3)
� After the DMA transfer completion, the segments must

be unmapped, using
int dma_unmap_sg(struct device *dev,

struct scatterlist *sglist,
int hwcount,
enum dma_data_direction dir)

72

MMC / SD

MMC Core
CONFIG_MMC

drivers/mmc/core/

MMC Host Driver
CONFIG_MMC_...

drivers/mmc/host/...

Block layer

MMC block device driver
CONFIG_MMC_BLOCK

drivers/mmc/card/{block,queue}.c

73

MMC host driver
� For each host

� struct mmc_host *mmc_alloc_host(int extra,
struct device *dev)

� Initialize struct mmc_host fields: caps, ops,
max_phys_segs, max_hw_segs, max_blk_size,
max_blk_count, max_req_size

� int mmc_add_host(struct mmc_host *host)

� At unregistration
� void mmc_remove_host(struct mmc_host *host)

� void mmc_free_host(struct mmc_host *host)

74

MMC host driver (2)
� The mmc_host->ops field points to a mmc_host_ops

structure
� Handle an I/O request

void (*request)(struct mmc_host *host,
struct mmc_request *req);

� Set configuration settings
void (*set_ios)(struct mmc_host *host,

struct mmc_ios *ios);
� Get read-only status

int (*get_ro)(struct mmc_host *host);
� Get the card presence status

int (*get_cd)(struct mmc_host *host);

75

להתחבר לטכנולוגיות חדשות , כולל סמינרים המגוונים המאפשרים למשתתפים לגלות את המגמות והטרנדים האחרונים 2017שבוע אורקל
.ולהיחשף למתודולוגיות עבודה המתאימות לפיתוח האינטנסיבי המאפיין חברות תוכנה כיום

בכל מסלול תוכלו למצוא סמינרים רלוונטיים העוסקים בחזית הטכנולוגיה ומתרכזים בפתרונות מבוססי , מסלולי לימוד 8הסמינרים מאוגדים תחת

– Oracleקוד פתוח ומבית היוצר של חברת
Big DataAnalytics & | Database|Development|DevOps|Cloud platforms
After Event Workshops| LeadersTechnology Managers & | Mobile trendsIoT & -The digital transformation

ון ברייס בתל אביב ויאפשרו למשתתפים לגעת בטכנולוגיה 'שיתקיימו בבניין ג After Event Workshopsשבוע אורקל יכלול יומיים של , גם השנה

.DevOps -ולהתנסות ביכולות מתקדמות וחדשניות במגוון נושאים הכרוכים בפיתוח וב

, Oracleזוהי ההזדמנות שלכם להתעדכן ולמקסם את היכולות שלכם משימוש בטכנולוגיות
, לשמוע את טובי המומחים בקהילת הטכנולוגיה והעסקים בישראל

טכנולוגיות ופתרונות מעשיים אשר יסייעו לכם למקסם את יכולתכם המקצועית , לצאת עם תובנות
: ייחודית ובעלת ערך חברתי ועסקי תוך מימוש החזון והמסר העיקרי של הכנס Networkingוליהנות מחוויית

 Maximize Your Oracle Experience

וההייטק בישראל IT-האירוע הלימודי המרכזי של תעשיית ה
הרצליה, מלון השרון | סמינרים מקצועיים |בנובמבר 19-23

תל אביב, ון ברייס הדרכה'בניין ג| After Event Workshops |בנובמבר 26-27

Thank You

77

